Ⅰ 导航哪个软件最好用
好用的导航软件推荐:网络地图、谷歌地图、凯立德导航、高德地图、腾讯地图。
一、网络地图
网络地图是网络提供的一项网络地图搜索服务,覆盖了国内近400个城市、数千个区县。在网络地图里,用户可以查询街道、商场、楼盘的地理位置。
导航选择注意:
1、搜星速度快:好用的导航仪一般搜星是不超过一分钟的,这表明机器配置还不错。
2、要注意导航地图:好用的地图将直接决定导航的效果,但不同地区效果也会有所差导,可根据情况进行挑选。
Ⅱ 哪个汽车品牌的四驱技术最厉害
奥迪quattro全时四驱
即全时四轮驱动,它能够把发动机的动力时刻有效地分配到四个轮子上,配合托森(Torsen)机械式中央差速器确保四个轮胎都有路面抓地力。正常行车状况下,quattro系统会以50:50分布前后轮动力,在坏路情况下系统可以自动调整至25:75或75:25,当左右轮在接触不同路面情况时,EDL可对即将打滑的一边车轮加以制动,把过剩的动力传至另一边轮胎。
在1980年3月3日,第一辆quattro在瑞士的日内瓦车展上成为世人瞩目的焦点。这铸就了一个不朽神话的开始:凭借quattro全时四轮驱动技术,奥迪取得了无数赛车比赛的胜利,时至今日仍然不可超越。毫无疑问,二十世纪八十年代,Michele Mouton、Stig Blomqvist、Hannu Mikkola以及Walter Rohrl等车手为汽车拉力赛历史书写了新的篇章,他们为奥迪quattro赢得了四项世界锦标赛冠军。不久之后,配备全时四轮驱动系统的quattro赛车在环形赛道比赛中赢得了同样的胜利,包括1988年美国TransAm系列赛的全胜。同时,奥迪A4 quattro Super Touring赛车赢得了它所参加的七个国家的房车锦标赛的所有冠军。
quattro全时四轮驱动技术为奥迪在赛车运动领域和民用汽车领域奠定了不可动摇的地位。quattro不但意味着全时四驱,同时还代表着非凡动力和快速安全的驾驶体验。quattro技术理念业已成为奥迪品牌成功的主要元素之一,具有重要的市场意义。例如,仅2004年,奥迪就生产了209,469辆装配quattro系统的汽车。自1980年至今,共有超过1,800,000辆配备全时四轮驱动系统的汽车离开装配线行驶在道路上——这一产量超过了任何一家全轮驱动汽车制造商
Ⅲ 扭矩是什么为什么汽车挂低档扭矩增大
汽车驱动理论 马力与扭力哪一项最能具体代表车辆性能?有人说「起步靠扭力,加 速靠马力」,也有人说「马力大代表极速高,扭力大代表加速好」,其实这些都是片段的错误解释,其实车辆的前进一定是靠引擎所发挥 的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听, 本文以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度 9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则 为磅-呎(lb-ft),在美国车的型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。 汽车驱动力的计算方式: 将扭矩除以车轮半径即可由引擎马力-扭力输出曲线图可发现,在每一个转速下都有一个相对的 扭矩数值,这些数值要如何转换成实际推动汽车的力量呢?答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一 部1.6升的引擎大约可发挥15.0kg-m的最大扭力,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。 36公斤的力量怎么推动一公吨的车重呢?而且动辄数千转的引擎转速更不可能恰好成为轮胎转速,否则车子不就飞起来了?幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。 举例说明,以小齿轮带动大齿轮,假设小齿轮的齿数为15齿,大齿轮的齿数为45齿。 当小齿轮以3000rpm的转速旋转,而扭矩为20kg-m时,传递至大齿轮的转速便降低了1/3,变成1000rpm;但是扭矩反而放大三倍,成为60kg-m。这就是引擎扭矩经由变速箱可降低转速并放大扭矩的基本原理。 在汽车上,引擎输出至轮胎为止共经过两次扭矩的放大,第一次由变 速箱的档位作用而产生,第二次则导因于最终齿轮比(或称最终传动 比)。扭矩的总放大倍率就是变速箱齿比与最终齿轮比的相乘倍数。举例来说,手排六代喜美的一档齿轮比为3.250,最终齿轮比为4.058,而引擎的最大扭矩为14.6kgm/5500rpm,于是我们可以算出第一档的最 大扭矩经过放大后为14.6×;3.250×;4.058=192.55kgm,比原引擎放大了13倍。此时再除以轮胎半径约0.41m,即可获得推力约为470公斤。然而上述的数值并不是实际的推力,毕竟机械传输的过程中必定有磨 耗损失,因此必须将机械效率的因素考虑在内。 论及机械效率,每经过一个齿轮传输,都会产生一次动力损耗,手排变速箱的机械效率约在95%左右,自排变速箱较惨,约剩88%左右,而传动轴的万向接头 效率约为98%,各位自己乘乘看就知道实际的推力还剩多少。整体而 言,汽车的驱动力可由下列公式计算: 扭矩×;变速箱齿比×;最终齿轮比×;机械效率 驱动力= ———————————————————— 轮胎半径(单位为公尺) 马力亦非「力」乃「功率」的一种 了解如何将扭矩经由变速箱的齿比放大成为实际推力之后,接着可以研究什么叫做「马力」。马力其实也不是一种「力」,而是一种功率 (Power)的单位,定义为单位时间内所能做「功」的大小。尽管如此,我们不得不继续使用「马力」这个名字,毕竟已经用太久了,讲「功率」恐怕没几个消费者听得懂? 功率是由扭矩计算出来的,而计算的公式相当简单:功率(W)=2π×; 扭矩(N-m)×;转速(rpm)/60,简化计算后成为:功率(kW)=扭矩(N-m) ×;转速(rpm)/9549,详细的推导请参看方块文章。然而功率kW要如何 转换成大家常见的「马力」呢,这又有一段故事得讲。 英制或公制? 1PS=735W;1hp=746W 马力定义竟然不一样! 谈到引擎的马力,相信不少人会直觉地想到什么DIN、SAE、EEC、JIS等等不同测试标准,到底这些标准的差异在哪儿,以后有空再研究;有点夸张的是由于英制与公制的不同,对「马力」的定义基本上就不一样。英制的马力(hp)定义为:一匹马于一分钟内将200磅(lb)重的物体拉动165英呎(ft),相乘之后等于33,000ft-lb/min;而公制的马力(PS)定义则为一匹马于一分钟内将75公斤的物体拉动60公尺,相乘之后等于4500kg-m/min。经过单位换算,(1lb=0.454kg;1ft=30.48cm)竟然发现1hp=4566kg-m/min,与公制的1PS=4500kg-m有些许差异,而如果以功率W(1W=1Nm/sec= 9.8kgm/sec)来换算的话,可得1hp=746W;1PS=735W两项不一样的结果。 同样是「马力」,英制马 力与公制马力的定义竟然不一样!难道英国马比较「有力」吗? 到底世界上为什么会有英制与公制的分别,就好像为什么有的汽车是右驾,有的却是左驾一样,是人类永远难以协调的差异点。若以大家 比较熟悉的几个测试标准来看,德国的DIN与欧洲共同体的新标准 EEC还有日本的JIS是以公制的PS为马力单位,而SAE使用的是英制的 hp为单位,但为了避免复杂,本刊一率将马力的单位标示为hp。近来,越来越多的原厂数据已改提供绝对无争议的KW作为引擎输出的功率数值。 不过话说回来,1PS与1hp之间的差异仅1.5%,每一百匹马力差1.5匹,差异并不大。一般房车的马力多半仅在200匹马力以下,两者由于定义的差异也仅3匹马力左右,因此如果您真要「马马计较」,就把SAE 标准的数据多个1.5%吧!不过SAE、JIS、DIN、EEC各种测试标准之 间亦有些许差异,这个老问题已经争论过很多次了,单位之间不能真正划上等号,然而在差别不怎么多的情况之下,就当作相同吧!因此 管他是PS或hp,都差不多可以视为相等。 终于可以做结论了!将上述获得的马力与功率换算方式代入功率与扭矩的换算公式,并且将扭矩的单位换算为大家熟悉的kg-m之后,可得下列结果: 英制马力hp=扭力(kg-m)×;引擎转速(rpm)/727 公制马力PS =扭力(kg-m)×;引擎转速(rpm)/716 知道这些公式之后有什么用呢?从「马力hp=扭力×;转速/727」看来, 如果能增加引擎转速,扭力不变的情况下,便能增加马力。例如若能 将转速从6000rpm增加到8000rpm,等于增加了33%,但因为凸轮轴的 限制使得8000rpm时的扭力下降了10%,则仍能使马力增加19.7%,这 说明了时下改装计算机的为何能在解除断油后大幅增加马力。 所以不要被「增加??匹马力」的广告所著魔。 让我们从另外一个角度来想:如果在同样的转速下,增加20匹马力,代表能增加多少推力呢?以最大扭力点发挥于5000rpm的情况下,将公式稍微变换一下,可发现增加的扭力=20hp×;727/ 5000rpm=2.9kgm。再将这个结果代入汽车驱动力的公式,同样以喜美 的一档计算,2.9×;3.250×;4.058/0.41=93公斤。对于一吨重的车身而言,影响似乎也不怎么大;再者如果相差5匹马力的话,推力更仅增加23公斤,可见相差5匹马力,根本也没差多少,所以能「增加5匹马力」的产品,到底应该花多少钱去改装,您自个儿会拿捏了吧? 大马力决定真性能! 到底大马力的车子跑得快,还是大扭力的车子跑得快?从公式可以知 道大马力的原因是「高转速的时候仍保有高扭力数值」,也就是说要 有大马力,不只是低转速的扭力要好,连高转速的扭力都得继续维持 ,这表示扭力与马力的争论根本是多余的,只要能做到高马力,除了表示各转速区域的扭力都很大之外,更代表材料技术的优越性,将活塞、进排气阀门的材质与重量予以强化与轻量化,才能将引擎转速提高。 扭矩与功率的换算公式推导 假设一圆的半径为r(单位为m),扭矩为T(单位为N-m),则圆周上切线 方向的力F=T/r,由于功率的定义为「每秒钟所作的功」,对于圆周?动而言,每旋转一圈所作的功为:F×;圆周总长2πr 将F=T/r代入计算,每一圈所作的功Work=F×;2πr=(T/r)×;2πr=2πT 再乘上引擎转速rpm就是每分钟所作的功,但功率P的单位是N-m/sec ,所以需除以60,转换成每秒所作的功。代入公式:P=T2πrpm/60,将常数整理后,则可得P(kW)=Trpm/9545。 由上文可见,一台车的动力由发动机传输到车轮,需要经过多组齿轮因此有所损耗,如果德制马力测的是传递到车轮上的动力,那么同样发动机用在不同车型上的动力输出应该不同,试拿bmw330和bmw530做比较,其功率均是225hp/5900rpm;结论,要么bmw在数据上造假,要么它测的是发动机输出净值。
Ⅳ G-TR第一代出场时间是什么时候
第一代GTR是在1969年第十五届日本东京车展展出的,第一代GTR是四门造型轿车,到版1971年GTR才增加了两门轿跑车权型,也就是大家熟悉的GTR R27,正是R27创造了50比赛的不败记录,成为了人们心目中的战神。
Ⅳ 谁帮忙翻译一下英文
在巡航高度, 当飞机是在同高的飞行中而且比较少的力量是必需的时候比较被用于拿- 走开或攀登,飞行员再一次减少气流 (飞机螺旋桨或汽车驶过引起的)速度方面的减少和对气速度的增加引擎力量。 因为刀锋角以对气速度的增加已经是增加 , 所以攻击的角仍然很小。
转力矩及 P 因素
转力矩反应包括物理学- 为每个行动的牛顿第三的法律,有一个对手和相对事物反应。 同样地适用于飞机, 这意谓如内在的引擎部份而且螺旋桨是回转的在一个方向中,相等的力量正在试着替换相反的方向飞机。[图 3-30]
当飞机是空运的时候,这力量正在纵观的轴周围行动, 容易订定飞机卷。 为了要为这偿还,一些较旧的飞机以方式被装配产生在正在被强迫的翅膀上的较多举起向下的。 较现代的飞机与引擎一起设计
弥补与转力矩的这效果背道而驰。
注意- 最大多数的美国建造飞机引擎替换螺旋桨顺时针的,如飞行员的位子所看。 讨论这里是关于那些引擎。
通常,那个偿还因素是长备地放置以便他们在巡航速度为这力量偿还,因为大多数的飞机操作举起以那速度。 然而,副翼为其他的速度整理定位键许可证进一步的调整。
当飞机的轮子在起飞卷期间是在地面上的时候,附加的旋转片刻在垂直的轴周围正在藉着转力矩反应感应。 如飞机的左边边被下被转力矩反应强迫,较多的重量正在被放置在左边的主要登陆恐惧上。 这造成较土地的摩擦,累赘, 在左边的轮带上比较在右边上,引起对左边的进一步的旋转片刻。 这片刻的大小依赖许多变数。 一些变数是;(1)引擎的大小和马力,螺旋桨的大小和 r.p.m。,(3)飞机的大小 , 和 (4) 地面表面的情况。
这 yawing 片刻在起飞卷上完全地被飞行员的改正舵或舵整齐的使用。
硬强地拉出效果
飞机螺旋桨的高速旋转给成螺旋状下降对气流 (飞机螺旋桨或汽车驶过引起的)旋转的拔塞钻。以高的螺旋桨速度和低下地向前地加速 ( 当做在起飞中而且接近有力量-在货摊上),这个成螺旋状下降旋转非常紧凑并且发挥在飞机的垂直尾部表面方面的强烈横向的力量。[图 3-31]
当这个成螺旋状下降气流 (飞机螺旋桨或汽车驶过引起的)罢工在左边者上的垂直鳍, 它引起左边的旋转片刻有关飞机的垂直斧头的事是。 那较多的小型房车螺旋形之物, 那更显着的这力量是。 如向前的速度增加,然而,螺旋形之物延长而且变成比较不有效。
拔塞钻气流 (飞机螺旋桨或汽车驶过引起的)流程也
Ⅵ 如何看电脑检测卡
别嫌麻烦别嫌罗嗦,最详细的就是最好的,慢慢看,多看几遍就记住了
特殊代码“00”和“FF”及其它起始码有三种情况出现:
①已由一系列其它代码之后再出现:“00”或“FF”,则主板OK。
②如果将CMOS中设置无错误,则不严重的故障不会影响BIOS自检的继续,而最终出现“00”或“FF”。
③一开机就出现“00”或“FF”或其它起始代码并且不变化则为板没有运行起来。
2、本表是按代码值从小到大排序,卡中出码顺序不定。
3、未定义的代码表中未列出。
4、对于不同BIOS(常用的AMI、Award、Phoenix)用同一代码所代表的意义有所不同,因此应弄清您所检测的电脑是属于哪一种类型的BIOS,您可查问你的电脑使用手册,或从主板上的BIOS芯片上直接查看,也可以在启动屏幕时直接看到。
5、有少数主板的PCI槽只有前一部分代码出现,但ISA槽则有完整自检代码输出。且目前已发现有极个别原装机主板的ISA槽无代码输出,而PCI槽则有完整代码输出,故建议您在查看代码不成功时,将本双槽卡换到另一种插槽试一下。另外,同一块主板的不同PCI槽,有的槽有完整代码送出,如DELL810主板只有靠近CPU的一个PCI槽有完整的代码显示,一直变化到“00”或“FF”,而其它槽走到“38”则不继续变化。
6、复位信号所需时间ISA与PCI不一定同步,故有可能ISA开始出代码,但PCI的复位灯还不熄,故PCI代码停在起始码上。
代码 Award BIOS Ami BIOS Phoenix BIOS或Tandy 3000 BIOS
00 . 已显示系统的配置;即将控制INI19引导装入。 .
01 处理器测试1,处理器状态核实,如果测试失败,循环是无限的。 处理器寄存器的测试即将开始,不可屏蔽中断即将停用。 CPU寄存器测试正在进行或者失败。
02 确定诊断的类型(正常或者制造)。如果键盘缓冲器含有数据就会失效。 停用不可屏蔽中断;通过延迟开始。 CMOS写入/读出正在进行或者失灵。
03 清除8042键盘控制器,发出TESTKBRD命令(AAH) 通电延迟已完成。 ROM BIOS检查部件正在进行或失灵。
04 使8042键盘控制器复位,核实TESTKBRD。 键盘控制器软复位/通电测试。 可编程间隔计时器的测试正在进行或失灵。
05 如果不断重复制造测试1至5,可获得8042控制状态。 已确定软复位/通电;即将启动ROM。 DMA初如准备正在进行或者失灵。
06 使电路片作初始准备,停用视频、奇偶性、DMA电路片,以及清除DMA电路片,所有页面寄存器和CMOS停机字节。 已启动ROM计算ROM BIOS检查总和,以及检查键盘缓冲器是否清除。 DMA初始页面寄存器读/写测试正在进行或失灵。
07 处理器测试2,核实CPU寄存器的工作。 ROM BIOS检查总和正常,键盘缓冲器已清除,向键盘发出BAT(基本保证测试)命令。 .
08 使CMOS计时器作初始准备,正常的更新计时器的循环。 已向键盘发出BAT命令,即将写入BAT命令。 RAM更新检验正在进行或失灵。
09 EPROM检查总和且必须等于零才通过。 核实键盘的基本保证测试,接着核实键盘命令字节。 第一个64K RAM测试正在进行。
0A 使视频接口作初始准备。 发出键盘命令字节代码,即将写入命令字节数据。 第一个64K RAM芯片或数据线失灵,移位。
0B 测试8254通道0。 写入键盘控制器命令字节,即将发出引脚23和24的封锁/解锁命令。 第一个64K RAM奇/偶逻辑失灵。
0C 测试8254通道1。 键盘控制器引脚23、24已封锁/解锁;已发出NOP命令。 第一个64K RAN的地址线故障。
0D 1、检查CPU速度是否与系统时钟相匹配。2、检查控制芯片已编程值是否符合初设置。3、视频通道测试,如果失败,则鸣喇叭。 已处理NOP命令;接着测试CMOS停开寄存器。 第一个64K RAM的奇偶性失灵
0E 测试CMOS停机字节。 CMOS停开寄存器读/写测试;将计算CMOS检查总和。 初始化输入/输出端口地址。
0F 测试扩展的CMOS。 已计算CMOS检查总和写入诊断字节;CMOS开始初始准备。 .
10 测试DMA通道0。 CMOS已作初始准备,CMOS状态寄存器即将为日期和时间作初始准备。 第一个64K RAM第0位故障。
11 测试DMA通道1。 CMOS状态寄存器已作初始准备,即将停用DMA和中断控制器。 第一个64DK RAM第1位故障。
12 测试DMA页面寄存器。 停用DMA控制器1以及中断控制器1和2;即将视频显示器并使端口B作初始准备。 第一个64DK RAM第2位故障。
13 测试8741键盘控制器接口。 视频显示器已停用,端口B已作初始准备;即将开始电路片初始化/存储器自动检测。 第一个64DK RAM第3位故障。
14 测试存储器更新触发电路。 电路片初始化/存储器处自动检测结束;8254计时器测试即将开始。 第一个64DK RAM第4位故障。
15 测试开头64K的系统存储器。 第2通道计时器测试了一半;8254第2通道计时器即将完成测试。 第一个64DK RAM第5位故障。
16 建立8259所用的中断矢量表。 第2通道计时器测试结束;8254第1通道计时器即将完成测试。 第一个64DK RAM第6位故障。
17 调准视频输入/输出工作,若装有视频BIOS则启用。 第1通道计时器测试结束;8254第0通道计时器即将完成测试。 第一个64DK RAM第7位故障。
18 测试视频存储器,如果安装选用的视频BIOS通过,由可绕过。 第0通道计时器测试结束;即将开始更新存储器。 第一个64DK RAM第8位故障。
19 测试第1通道的中断控制器(8259)屏蔽位。 已开始更新存储器,接着将完成存储器的更新。 第一个64DK RAM第9位故障。
1A 测试第2通道的中断控制器(8259)屏蔽位。 正在触发存储器更新线路,即将检查15微秒通/断时间。 第一个64DK RAM第10位故障。
1B 测试CMOS电池电平。 完成存储器更新时间30微秒测试;即将开始基本的64K存储器测试。 第一个64DK RAM第11位故障。
1C 测试CMOS检查总和。 . 第一个64DK RAM第12位故障。
1D 调定CMOS配置。 . 第一个64DK RAM第13位故障。
1E 测定系统存储器的大小,并且把它和CMOS值比较。 . 第一个64DK RAM第14位故障。
1F 测试64K存储器至最高640K。 . 第一个64DK RAM第15位故障。
20 测量固定的8259中断位。 开始基本的64K存储器测试;即将测试地址线。 从属DMA寄存器测试正在进行或失灵。
21 维持不可屏蔽中断(NMI)位(奇偶性或输入/输出通道的检查)。 通过地址线测试;即将触发奇偶性。 主DMA寄存器测试正在进行或失灵。
22 测试8259的中断功能。 结束触发奇偶性;将开始串行数据读/写测试。 主中断屏蔽寄存器测试正在进行或失灵。
23 测试保护方式8086虚拟方式和8086页面方式。 基本的64K串行数据读/写测试正常;即将开始中断矢量初始化之前的任何调节。 从属中断屏蔽存器测试正在进行或失灵。
24 测定1MB以上的扩展存储器。 矢量初始化之前的任何调节完成,即将开始中断矢量的初始准备。 设置ES段地址寄存器注册表到内存高端。
25 测试除头一个64K之后的所有存储器。 完成中断矢量初始准备;将为旋转式断续开始读出8042的输入/输出端口。 装入中断矢量正在进行或失灵。
26 测试保护方式的例外情况。 读出8042的输入/输出端口;即将为旋转式断续开始使全局数据作初始准备。 开启A20地址线;使之参入寻址。
27 确定超高速缓冲存储器的控制或屏蔽RAM。 全1数据初始准备结束;接着将进行中断矢量之后的任何初始准备。 键盘控制器测试正在进行或失灵。
28 确定超高速缓冲存储器的控制或者特别的8042键盘控制器。 完成中断矢量之后的初始准备;即将调定单色方式。 CMOS电源故障/检查总和计算正在进行。
29 . 已调定单色方式,即将调定彩色方式。 CMOS配置有效性的检查正在进行。
2A 使键盘控制器作初始准备。 已调定彩色方式,即将进行ROM测试前的触发奇偶性。 置空64K基本内存。
2B 使磁碟驱动器和控制器作初始准备。 触发奇偶性结束;即将控制任选的视频ROM检查前所需的任何调节。 屏幕存储器测试正在进行或失灵。
2C 检查串行端口,并使之作初始准备。 完成视频ROM控制之前的处理;即将查看任选的视频ROM并加以控制。 屏幕初始准备正在进行或失灵。
2D 检测并行端口,并使之作初始准备。 已完成任选的视频ROM控制,即将进行视频ROM回复控制之后任何其他处理的控制。 屏幕回扫测试正在进行或失灵。
2E 使硬磁盘驱动器和控制器作初始准备。 从视频ROM控制之后的处理复原;如果没有发现EGA/VGA就要进行显示器存储器读/写测试。 检测视频ROM正在进行。
2F 检测数学协处理器,并使之作初始准备。 没发现EGA/VGA;即将开始显示器存储器读/写测试。 .
30 建立基本内存和扩展内存。 通过显示器存储器读/写测试;即将进行扫描检查。 认为屏幕是可以工作的。
31 检测从C800:0至EFFF:0的选用ROM,并使之作初始准备。 显示器存储器读/写测试或扫描检查失败,即将进行另一种显示器存储器读/写测试。 单色监视器是可以工作的。
32 对主板上COM/LTP/FDD/声音设备等I/O芯片编程使之适合设置值。 通过另一种显示器存储器读/写测试;却将进行另一种显示器扫描检查。 彩色监视器(40列)是可以工作的。
33 . 视频显示器检查结束;将开始利用调节开关和实际插卡检验显示器的关型。 彩色监视器(80列)是可以工作的。
34 . 已检验显示器适配器;接着将调定显示方式。 计时器滴答声中断测试正在进行或失灵。
35 . 完成调定显示方式;即将检查BIOS ROM的数据区。 停机测试正在进行或失灵。
36 . 已检查BIOS ROM数据区;即将调定通电信息的游标。 门电路中A-20失灵。
37 . 识别通电信息的游标调定已完成;即将显示通电信息。 保护方式中的意外中断。
38 . 完成显示通电信息;即将读出新的游标位置。 RAM测试正在进行或者地址故障>FFFFH。
39 . 已读出保存游标位置,即将显示引用信息串。 .
3A . 引用信息串显示结束;即将显示发现<ESC>信息。 间隔计时器通道2测试或失灵。
3B 用OPTI电路片(只是486)使辅助超高速缓冲存储器作初始准备。 已显示发现<ESC>信息;虚拟方式,存储器测试即将开始。 按日计算的日历时钟测试正在进行或失灵。
3C 建立允许进入CMOS设置的标志。 . 串行端口测试正在进行或失灵。
3D 初始化键盘/PS2鼠标/PNP设备及总内存节点。 . 并行端口测试正在进行或失灵。
3E 尝试打开L2高速缓存。 . 数学协处理器测试正在进行或失灵。
40 . 已开始准备虚拟方式的测试;即将从视频存储器来检验。 调整CPU速度,使之与外围时钟精确匹配。
41 中断已打开,将初始化数据以便于0:0检测内存变换(中断控制器或内存不良) 从视频存储器检验之后复原;即将准备描述符表。 系统插件板选择失灵。
42 显示窗口进入SETUP。 描述符表已准备好;即将进行虚拟方式作存储器测试。 扩展CMOS RAM故障。
43 若是即插即用BIOS,则串口、并口初始化。 进入虚拟方式;即将为诊断方式实现中断。 .
44 . 已实现中断(如已接通诊断开关;即将使数据作初始准备以检查存储器在0:0返转。) BIOS中断进行初始化。
45 初始化数学协处理器。 数据已作初始准备;即将检查存储器在0:0返转以及找出系统存储器的规模。 .
46 . 测试存储器已返回;存储器大小计算完毕,即将写入页面来测试存储器。 检查只读存储器ROM版本。
47 . 即将在扩展的存储器试写页面;即将基本640K存储器写入页面。 .
48 . 已将基本存储器写入页面;即将确定1MB以上的存储器。 视频检查,CMOS重新配置。
49 . 找出1BM以下的存储器并检验;即将确定1MB以上的存储器。 .
4A . 找出1MB以上的存储器并检验;即将检查BIOS ROM数据区。 进行视频的初始化。
4B . BIOS ROM数据区的检验结束,即将检查<ESC>和为软复位清除1MB以上的存储器。 .
4C . 清除1MB以上的存储器(软复位)即将清除1MB以上的存储器. 屏蔽视频BIOS ROM。.
4D 已清除1MB以上的存储器(软复位);将保存存储器的大小。 .
4E 若检测到有错误;在显示器上显示错误信息,并等待客户按<F1>键继续。 开始存储器的测试:(无软复位);即将显示第一个64K存储器的测试。 显示版权信息。
4F 读写软、硬盘数据,进行DOS引导。 开始显示存储器的大小,正在测试存储器将使之更新;将进行串行和随机的存储器测试。 .
50 将当前BIOS监时区内的CMOS值存到CMOS中。 完成1MB以下的存储器测试;即将高速存储器的大小以便再定位和掩蔽。 将CPU类型和速度送到屏幕。
51 . 测试1MB以上的存储器。 .
52 所有ISA只读存储器ROM进行初始化,最终给PCI分配IRQ号等初始化工作。 已完成1MB以上的存储器测试;即将准备回到实址方式。 进入键盘检测。
53 如果不是即插即用BIOS,则初始化串口、并口和设置时种值。 保存CPU寄存器和存储器的大小,将进入实址方式。 .
54 . 成功地开启实址方式;即将复原准备停机时保存的寄存器。 扫描“打击键”
55 . 寄存器已复原,将停用门电路A-20的地址线。 .
56 . 成功地停用A-20的地址线;即将检查BIOS ROM数据区。 键盘测试结束。
57 . BIOS ROM数据区检查了一半;继续进行。 .
58 . BIOS ROM的数据区检查结束;将清除发现<ESC>信息。 非设置中断测试。
59 . 已清除<ESC>信息;信息已显示;即将开始DMA和中断控制器的测试。 .
5A . . 显示按“F2”键进行设置。
5B . . 测试基本内存地址。
5C . . 测试640K基本内存。
60 设置硬盘引导扇区病毒保护功能。 通过DMA页面寄存器的测试;即将检验视频存储器。 测试扩展内存。
61 显示系统配置表。 视频存储器检验结束;即将进行DMA#1基本寄存器的测试。 .
62 开始用中断19H进行系统引导。 通过DMA#1基本寄存器的测试;即将进行DMA#2寄存器的测试。 测试扩展内存地址线。
63 . 通过DMA#2基本寄存器的测试;即将检查BIOS ROM数据区。 .
64 . BIOS ROM数据区检查了一半,继续进行。 .
65 . BIOS ROM数据区检查结束;将把DMA装置1和2编程。 .
66 . DMA装置1和2编程结束;即将使用59号中断控制器作初始准备。 Cache注册表进行优化配置。
67 . 8259初始准备已结束;即将开始键盘测试。 .
68 . . 使外部Cache和CPU内部Cache都工作。
6A . . 测试并显示外部Cache值。
6C . . 显示被屏蔽内容。
6E . . 显示附属配置信息。
70 . . 检测到的错误代码送到屏幕显示。
72 . . 检测配置有否错误。
74 . . 测试实时时钟。
76 . . 扫查键盘错误。
7A . . 锁键盘。
7C . . 设置硬件中断矢量。
7E . . 测试有否安装数学处理器。
80 . 键盘测试开始,正在清除和检查有没有键卡住,即将使键盘复原。 关闭可编程输入/输出设备。
81 . 找出键盘复原的错误卡住的键;即将发出键盘控制端口的测试命令。 .
82 . 键盘控制器接口测试结束,即将写入命令字节和使循环缓冲器作初始准备。 检测和安装固定RS232接口(串口)。
83 . 已写入命令字节,已完成全局数据的初始准备;即将检查有没有键锁住。 .
84 . 已检查有没有锁住的键,即将检查存储器是否与CMOS失配。 检测和安装固定并行口。
85 . 已检查存储器的大小;即将显示软错误和口令或旁通安排。 .
86 . 已检查口令;即将进行旁通安排前的编程。 重新打开可编程I/O设备和检测固定I/O是否有冲突。
87 . 完成安排前的编程;将进行CMOS安排的编程。 .
88 . 从CMOS安排程序复原清除屏幕;即将进行后面的编程。 初始化BIOS数据区。
89 . 完成安排后的编程;即将显示通电屏幕信息。 .
8A . 显示头一个屏幕信息。 进行扩展BIOS数据区初始化。
8B . 显示了信息:即将屏蔽主要和视频BIOS。 .
8C . 成功地屏蔽主要和视频BIOS,将开始CMOS后的安排任选项的编程。 进行软驱控制器初始化。
8D . 已经安排任选项编程,接着检查滑了鼠和进行初始准备。 .
8E . 检测了滑鼠以及完成初始准备;即将把硬、软磁盘复位。 .
8F . 软磁盘已检查,该磁碟将作初始准备,随后配备软磁碟。 .
90 . 软磁碟配置结束;将测试硬磁碟的存在。 硬盘控制器进行初始化。
91 . 硬磁碟存在测试结束;随后配置硬磁碟。 局部总线硬盘控制器初始化。
92 . 硬磁碟配置完成;即将检查BIOS ROM的数据区。 跳转到用户路径2。
93 . BIOS ROM的数据区已检查一半;继续进行。 .
94 . BIOS ROM的数据区检查完毕,即调定基本和扩展存储器的大小。 关闭A-20地址线。
95 . 因应滑鼠和硬磁碟47型支持而调节好存储器的大小;即将检验显示存储器。 .
96 . 检验显示存储器后复原;即将进行C800:0任选ROM控制之前的初始准备。 “ES段”注册表清除。
97 . C800:0任选ROM控制之前的任何初始准备结束,接着进行任选ROM的检查及控制。 .
98 . 任选ROM的控制完成;即将进行任选ROM回复控制之后所需的任何处理。 查找ROM选择。
99 . 任选ROM测试之后所需的任何初始准备结束;即将建立计时器的数据区或打印机基本地址。 .
9A . 调定计时器和打印机基本地址后的返回操作;即调定RS-232基本地址。 屏蔽ROM选择。
9B . 在RS-232基本地址之后返回;即将进行协处理器测试之初始准备。 .
9C . 协处理器测试之前所需初始准备结束;接着使协处理器作初始准备。 建立电源节能管理。
9D . 协处理器作好初始准备,即将进行协处理器测试之后的任何初始准备。 .
9E . 完成协处理器之后的初始准备,将检查扩展键盘,键盘识别符,以及数字锁定。 开放硬件中断。
9F . 已检查扩展键盘,调定识别标志,数字锁接通或断开,将发出键盘识别命令。 .
A0 . 发出键盘识别命令;即将使键盘识别标志复原。 设置时间和日期。
A1 . 键盘识别标志复原;接着进行高速缓冲存储器的测试。 .
A2 . 高速缓冲存储器测试结束;即将显示任何软错误。 检查键盘锁。
A3 . 软错误显示完毕;即将调定键盘打击的速率。 .
A4 . 调好键盘的打击速率,即将制订存储器的等待状态。 键盘重复输入速率的初始化。
A5 . 存储器等候状态制定完毕;接着将清除屏幕。 .
A6 . 屏幕已清除;即将启动奇偶性和不可屏蔽中断。 .
A7 . 已启用不可屏蔽中断和奇偶性;即将进行控制任选的ROM在E000:0之所需的任何初始准备。 .
A8 . 控制ROM在E000:0之前的初始准备结束,接着将控制E000:0之后所需的任何初始准备。 清除“F2”键提示。
A9 . 从控制E000:0 ROM返回,即将进行控制E000:0任选ROM之后所需的任何初始准备。 .
AA . 在E000:0控制任选ROM之后的初始准备结束;即将显示系统的配置。 扫描“F2”键打击。
AC . . 进入设置.
AE . . 清除通电自检标志。
B0 . . 检查非关键性错误。
B2 . . 通电自检完成准备进入操作系统引导。
B4 . . 蜂鸣器响一声。
B6 . . 检测密码设置(可选)。
B8 . . 清除全部描述表。
BC . . 清除校验检查值。
BE 程序缺省值进入控制芯片,符合可调制二进制缺省值表。 . 清除屏幕(可选)。
BF 测试CMOS建立值。 . 检测病毒,提示做资料备份。
C0 初始化高速缓存。 . 用中断19试引导。
C1 内存自检。 . 查找引导扇区中的“55”“AA”标记。
C3 第一个256K内存测试。 . .
C5 从ROM内复制BIOS进行快速自检。 . .
C6 高速缓存自检。 . .
CA 检测Micronies超速缓冲存储器(如果存在),并使之作初始准备。 . .
CC 关断不可屏蔽中断处理器。 . .
EE 处理器意料不到的例外情况。 . .
FF 给予INI19引导装入程序的控制,主板OK。
Ⅶ 在ArcGIS中,怎么把JPG格式的图片和SHPFILE进行叠加啊
建议是转换成TIF格式之后做下影像校正和重采样,再设置和shpfile一样的空间参考信息即可